Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Heliyon ; 10(7): e28043, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38586322

Rice, a primary food source in many countries of the world accumulate potentially harmful elements which pose a significant health hazard to consumers. The current study aimed to evaluate potentially toxic and mineral elements in both paddy soils and rice grains associated with allied health risks in Malakand, Pakistan. Rice plants with intact root soil were randomly collected from paddy fields and analyzed for mineral and potentially toxic elements (PTEs) through inductively coupled plasma optical emission spectrometry (ICP‒OES). Through deterministic and probabilistic risk assessment models, the daily intake of PTEs with allied health risks from consumption of rice were estimated for children and adults. The results of soil pH (< 8.5) and electrical conductivity (EC > 400 µs/cm), indicated slightly saline nature. The mean phosphorus concentration of 291.50 (mg/kg) in soil samples exceeded FAO/WHO permissible limits. The normalized variation matrix of soil pH with respect to Ni (0.05), Ca (0.05), EC (0.08), and Mg (0.09), indicated significant influence of pH on PTEs mobility. In rice grains, the mean concentrations (mg/kg) of Mg (463.81), Al (70.40), As (1.23), Cr (12.53), Cu (36.07), Fe (144.32), Mn (13.89), and Ni (1.60) exceeded FAO/WHO safety limits. The transfer factor >1 for K, Cu, P and Zn indicated bioavailability and transfer of these elements from soil to rice grains. Monte Carlo simulations of hazard index >1 for Cr, Zn, As, and Cu with certainties of 89.93% and 90.17%, indicated significant noncarcinogenic risks for children and adults from rice consumption. The total carcinogenic risk (TCR) for adults and children exceeded the USEPA acceptable limits of 1×10-6 to 1×10-4, respectively. The sensitivity analysis showed that the ingestion rate was a key risk factor. Arsenic (As) primarily influenced total cancer risk (TCR) in children, while chromium (Cr) significantly impacted adults. Deterministic cancer risk values slightly exceeded probabilistic values due to inherent uncertainties in deterministic analysis. Rice consumption poses health risks, mainly from exposure to Cr, Ni and As in the investigated area.

2.
Environ Pollut ; 317: 120723, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36436664

Antimony (Sb-V), a carcinogenic metalloid, is becoming prevalent in water and soil due to anthropogenic activities. Biochar could be an effective remedy for Sb(V)-contaminated water and soil. In this study, we used pristine and engineered pinecone-derived biochar as an innovative approach for treating Sb(V)-contaminated water and shooting range soil. Biochar was produced from pine-cone waste (pristine biochar) and enriched with Fe and Al salts via saturation (engineered biochar). Adsorption tests in water revealed that iron-modified biochar showed higher adsorption capacity (8.68 mg g-1) than that of the pristine biochar (2.49 mg g-1) and aluminum-modified biochar (3.40 mg g-1). Isotherm and kinetic modeling of the adsorption data suggested that the adsorption process varied from monolayer to multilayer, with chemisorption as the dominant interaction mechanism between Sb(V) and the biochars. The post-adsorption study of iron-modified biochar by Fourier Transform Infrared (FTIR) and X-ray diffraction (XRD) further supported the chemical bonding and outer-sphere complexation of Sb(V) with Fe, N-H, O-H, C-O and CC components. The pristine and iron-modified biochars also successfully immobilized Sb(V) in a shooting range soil, more so in the latter. Subsequent sequential extractions and post-analysis by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and elemental dot mapping revealed that Sb in the treated soil transformed to a more stable form. It was concluded that iron-modified biochar could act as an efficient material for the adsorption and immobilization of Sb(V) in water and soil, respectively.


Military Personnel , Water Pollutants, Chemical , Humans , Antimony/analysis , Soil , Adsorption , Charcoal , Iron/analysis , Water/analysis , Kinetics , Water Pollutants, Chemical/analysis
3.
PLoS One ; 17(12): e0279083, 2022.
Article En | MEDLINE | ID: mdl-36542623

Water is a vital, finite resource whose quantity and quality are deteriorating as the world population increases. The current study aims to investigate the concentration of heavy metals (HM) in surface water for irrigation purposes with associated human health risks and pollution sources near the marble industry in Malakand, Pakistan. Twenty-seven water samples were randomly collected and analyzed for HM concentration by inductively coupled plasma‒optical emission spectrometry (ICP‒OES). pH, electrical conductivity (EC), total dissolved solids (TDS), biological oxygen demand (BOD), and chemical oxygen demand (COD) were measured using standard methods of American Public Health Association (APHA). Irrigation suitability was assessed using specific water quality parameters. The associated health risks from ingestion and dermal exposure to heavy metals were calculated by USEPA health risk indices. Pollution sources and spatial distribution mapping were studied using compositional data analysis (CoDa) and the application of a geographic information system (GIS) to understand the changing behavior of heavy metals in surface waters. The concentrations of BOD (89%), COD (89%), Al (89%), Ca (89%), Cr (56%), Cu (78%), Fe (56%), K (34%) Mg (23%), Mn (56%), Na (89%), Ni (56%), P (89%), and Zn (11%) exceeded the safety limits of National Environmental Quality standards (NEQs) of Pakistan. The results of Kelly's ratio (KR) classified surface water as unsuitable for irrigation. The average daily doses (ADD, mg/kg/day) for Al, Cu, Cr, Fe, Mn, Ni, and Zn were higher in children than in adults. The hazard index (HI) for children and adults was above the threshold (HI > 1), indicating a significant risk of non-carcinogenic toxicity. The carcinogenic risk values for Cr and Ni were above the USEPA limit (1 × 10-6 to 1 × 10-4), suggesting a potential carcinogenic risk for the target population. Principal component analysis (PCA), biplot (CLR), and the CoDa-dendrogram allowed for the identification of elemental associations, and their potential source was anthropogenic rather than natural in origin. Regular monitoring and phytoremediation strategies are proposed to safeguard crops and human health.


Metals, Heavy , Water Pollutants, Chemical , Adult , Child , Humans , Environmental Monitoring/methods , Pakistan , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Metals, Heavy/toxicity , Metals, Heavy/analysis , Water Quality , Risk Assessment
4.
Environ Res ; 212(Pt D): 113540, 2022 09.
Article En | MEDLINE | ID: mdl-35643310

Drinking fluoride (F-)-contaminated water (>1.5 mg L-1) causes severe dental and skeletal disorders. In the central province of Pakistan, ∼20 times higher levels of F- in the drinking groundwater (compared with the 1.5 mg L-1 permissible limit of the World Health Organization) are triggering bone abnormalities in teenagers. In this study, we demonstrated the potential of pinecone-derived biochar (pristine) impregnated with Fe- and Al-salts (engineered) to defluoridate water. Batch mode adsorption experiments were carried out under variable conditions of solution pH, F- initial concentration, adsorbent dose, and contact time. The engineered biochars resulted in greater adsorption than that of pristine biochar. Specifically, the AlCl3-modified biochar exhibited a maximum adsorption capacity of 14.07 mg g-1 in spiked water and 13.07 mg g-1 in in-situ groundwater. The equilibrium isothermal and kinetic models predicted monolayer, cooperative, and chemisorption types of the adsorption process. The chemical interaction and outer-sphere complexation of F- with Al, Na, and H elements were further confirmed by the post-adsorption analysis of the AlCl3-modified biochar by FTIR and XRD. The AlCl3-modified biochar resulted in 87.13% removal of F- from the in-situ F--contaminated groundwater, even in the presence of naturally occurring competing ions (such as Cl-, HCO3-, SO42-, and NO3-). We conclude that the AlCl3-modified biochar derived from pinecone could be a promising cost-effective adsorbent for the defluoridation of water.


Fluorides , Water Pollutants, Chemical , Adsorption , Charcoal , Kinetics , Water , Water Pollutants, Chemical/analysis
5.
Biol Trace Elem Res ; 199(9): 3562-3569, 2021 Sep.
Article En | MEDLINE | ID: mdl-33079299

The demand for skin-whitening creams (SWCs) has increased rapidly worldwide due to sharp rise in product advertisements in the media and the growing awareness. Metals are present either as impurities or added intentionally in creams and may have toxic effects on users. The present study was carried out to determine the content of metals such as mercury (Hg), cadmium (Cd), lead (Pb), arsenic (As), chromium (Cr), nickel (Ni), cobalt (Co), copper (Cu), zinc (Zn), and iron (Fe) in fifteen skin-whitening creams marketed at local shops in Islamabad, Pakistan. The concentrations of metals were analyzed by inductive coupled plasma-optical emission spectrometer (ICP-OES) after digestion with a mixture of HNO3, HCl, and H2O2. The skin-whitening creams were found to have metal concentrations in parts per million (ppm) in the following range: Hg (1.0-18,210 ppm), Co (0.1992-1.9931 ppm), Cr (1.0453-2.7455 ppm), Cu (0.6987-0.1997 ppm), Fe (8.8868-28.6213 ppm), Ni (0.7487-1.5958 ppm), Pb (0.2997-4.7287 ppm), and Zn (7819.2-39,696.7 ppm). As and Cd were not detected in any of the fifteen skin-whitening creams. Only one cream (L'Oréal Paris White Perfect) was found in safe limits defined by the Food and Drug Administration for cosmetics. In order to elucidate the mechanism of lower production of melanin in presence of heavy metals, a molecular docking study was carried out by using Molecular Operating Environment (MOE) software. A good correlation was observed between experimental findings and molecular docking studies.


Metals, Heavy , Monophenol Monooxygenase , Environmental Monitoring , Hydrogen Peroxide , Metals, Heavy/analysis , Molecular Docking Simulation , Pakistan
...